Geoderma 360 (2020) 114009

Contents lists available at ScienceDirect

GEODERMA

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Check for
updates

Predicting glyphosate sorption across New Zealand pastoral soils using basic
soil properties or Vis—NIR spectroscopy

Cecilie Hermansen™*, Trine Norgaard®, Lis Wollesen de Jonge”, Per Moldrup®, Karin Miiller®,
Maria Knadel”
2 Dept. of Agroecology, Faculty of Sciences and Technology, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark

" Dept. of Civil Engineering, Aalborg University, Thomas Manns Vej 23, DK-9200 Aalborg, Denmark
© The New Zealand Institute for Plant & Food Research Limited (PFR), Land Use Impacts, Hamilton, New Zealand

ABSTRACT

Glyphosate [N-(phosphonomethyl) glycine] is the active ingredient in Roundup, which is the most used herbicide around the world. It is a non-selective herbicide
with carboxyl, amino, and phosphonate functional groups, and it has a strong affinity to the soil mineral fraction. Sorption plays a major role for the fate and
transport of glyphosate in the environment. The sorption coefficient (K4) of glyphosate, and hence its mobility, varies greatly among different soil types. Determining
Ky is laborious and requires the use of wet chemistry. In this study, we aimed to estimate Ky using basic soil properties, and visible near-infrared spectroscopy
(vis-NIRS). The latter method is fast, requires no chemicals, and several soil properties can be estimated from the same spectrum. The data set included 68 topsoil
samples collected across the South Island of New Zealand, with clay and organic carbon (OC) contents ranging from 0.001 to 0.520kgkg~' and 0.021 to
0.217 kg kg ™', respectively. The K4 was determined with batch equilibration sorption experiments and ranged from 13 to 3810 L kg~ '. The visible near-infrared
spectra were obtained from 400 to 2500 nm. Multiple linear regression was used to correlate K4 to oxalate extractable aluminium and phosphorous and pH, which
resulted in an R? of 0.89 and an RMSE of 259.59 L.kg ™ '. Further, interval partial least squares regression with ten-fold cross-validation was used to predict K4 by
vis-NIRS, and an R? of 0.93 and an RMSECV of 207.58 Lkg ™! were obtained. Thus, these results show that both basic soil properties and vis-NIRS can predict the
variation in Ky across these samples with high accuracy and hence, that glyphosate sorption to a soil can be determined with vis—NIRS.

1. Introduction

Glyphosate is a non-selective, broad-spectrum herbicide, which is
intensively used for weed control worldwide (Borggaard and Gimsing,
2008). In fact, it is the most widely used herbicide in the world, and
also in New Zealand, where it is used in about 90 different herbicides
(Ministry for Primary Industries, 2015). The last survey of pesticide use
in New Zealand was conducted in 2004: 344.3 t of the active ingredient
were used which equals about 8% of the total pesticide use in 2004
(Manktelow et al., 2004). Glyphosate was the only pesticide determined
in concentrations up to 950 ng g~ ! in sediment samples from estuarine
sites located in residential areas of Auckland, New Zealand’s biggest
city (Stewart et al., 2014). However, in spite of its intensive use in
agriculture and residential areas, the herbicide has not yet been in-
cluded in the 4-yearly national survey of pesticide residues in

groundwater (Close and Skinner, 2012).

Glyphosate sorbs strongly to soil. Despite this, glyphosate and its
metabolite aminomethylphosphonic acid (AMPA) have also been de-
tected in ground and surface waters (Borggaard, 2011; Borggaard and
Gimsing, 2008; Kjer et al., 2005; Norgaard et al., 2014). This may
partly be explained by colloid-facilitated transport of glyphosate (de
Jonge et al., 2004a; de Jonge et al., 2004b; Norgaard et al., 2013). The
mobility of glyphosate in soil and hence the risk of leaching depend
inter alia on sorption-desorption processes, biological and chemical
degradation, and leaching through the soil matrix or macropores either
in dissolved form or sorbed onto colloids (Al-Rajab et al., 2008; Arias-
Estévez et al., 2008; Borggaard and Gimsing, 2008; de Jonge et al.,
2000; Norgaard et al., 2014).

The sorption coefficient (Kq) is one of the most important soil
properties for assessing the risk of pesticide leaching (Farenhorst et al.,
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2008). Glyphosate is composed of three functional groups (amino,
phosphonate and carboxylate), and it sorbs strongly to the soil mineral
fraction with high affinity for iron and aluminum oxides (Borggaard,
2011; de Jonge et al., 2001; Gerritse et al., 1996; Sheals et al., 2002)
and clay minerals (Borggaard and Gimsing, 2008; Glass, 1987; Sprankle
et al., 1975). The literature on the effect of soil organic matter (OM) on
the K4 of glyphosate report contrasting results (Borggaard and Gimsing,
2008; Vereecken, 2005): It was reported that OM can increase Ky
(Dollinger et al., 2015; Piccolo et al., 1996), have no effect, or decrease
Kq4 (Gerritse et al., 1996; Paradelo et al., 2015). The content of phos-
phate can decrease glyphosate sorption, because phosphate and gly-
phosate compete for the same sorption sites (Borggaard, 2011; de Jonge
and de Jonge, 1999; de Jonge et al., 2001; Gimsing and Borggaard,
2010), although it has also been suggested that glyphosate and phos-
phate sorption can be additive (Borggaard and Gimsing, 2008).

Besides soil composition, soil chemistry also affect the Ky of gly-
phosate. It is well documented that an increase in pH is accompanied by
a decreasing K4 of glyphosate (de Jonge and de Jonge, 1999; Gimsing
et al., 2004; Paradelo et al., 2015). Glyphosate becomes more nega-
tively charged with increasing soil pH, which increases the electrostatic
repulsion between the negatively charged glyphosate and the soil sur-
face (Dollinger et al., 2015). Cation exchange capacity is another factor
which increases K4 (Dollinger et al., 2015), whereas increasing elec-
trical conductivity (EC) decreases K4, which might be caused by cations
in solution that forms a complex with glyphosate, and thereby reduces
sorption to the soil (Paradelo et al., 2015).

The K4 of glyphosate can be measured by batch equilibrium sorption
experiments, and several authors suggest to estimate Ky from pedo-
transfer-functions with a set of easily measurable soil properties as
input parameters (Dollinger et al., 2015; Gimsing et al., 2004; Paradelo
et al., 2015). Pedotransfer-functions have proven useful for determining
Kg, but the optimal set of soil properties for K4 determination depends
on the specific dataset used (Paradelo et al., 2016). Prioritization of the
soil properties required for estimating Ky remains a complex task.
Visible near-infrared spectroscopy (vis-NIRS) has also been used to
predict sorption coefficients of pesticides (Bengtsson et al., 2007;
Forouzangohar et al., 2009; Paradelo et al., 2016). It is a rapid and cost
efficient alternative to conventional soil analysis. Multiple basic and
functional soil properties can be predicted from one visible near-in-
frared (vis-NIR) spectrum (Ben-Dor and Banin, 1995; Chang et al.,
2001; Hermansen et al., 2016; Hermansen et al., 2017; Katuwal et al.,
2018a; Katuwal et al., 2018b; Knadel et al., 2016; Stenberg et al.,
2010). Detailed information about the organic and inorganic soil
composition is embedded in the vis-NIR spectra. This information
originates from overtone and combination bands from fundamental
vibrations of different functional groups (CO, CH, OH, NH, and metal-
OH) in the mid-infrared range (Clark, 1999; Hunt, 1977). These spectral
signatures enable the wide applicability of vis—NIRS to predict soil
properties (Ben-Dor and Banin, 1995; Stenberg et al., 2010).

Only one previous study has documented successful vis—-NIRS pre-
diction of K4 of glyphosate across a Danish agricultural field (K4 from
162 to 536 Lkg’l) (Paradelo et al., 2016). Iron and aluminium oxides
as well as clay minerals have been found to be some of the main con-
trollers of the K4 of glyphosate (Borggaard and Gimsing, 2008;
Dollinger et al., 2015). These are soil properties with direct spectral
signatures within the vis—NIR spectral range (Ben-Dor, 2002). Thus,
there is a potential that vis—-NIRS can predict the K4 of glyphosate across
soils with larger variability. In this study, we used soil samples from
New Zealand collected across the entire South Island, thus representing
a wide range of soil orders, parent materials and mineralogy. Our
specific objectives were to:

.

. Determine the set of soil properties that best describe the variation
in the Ky of glyphosate.

ii. Examine if the Ky of glyphosate can be predicted based on vis—-NIRS

spectra.
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Fig. 1. Sampling sites at the South Island of New Zealand for the 68 soil sam-
ples included in this study. The twenty-six sampling sites represented five soil
orders. SHW, state highway networks.

2. Materials and methods
2.1. Soil samples and soil properties

Soil samples were collected across New Zealand’s South Island in
summer 2012 (Hermansen et al., 2019). The 26 sampling sites were
selected to represent the dominant soil orders under pasture in the is-
land, being Brown, Pallic, Podzol and Recent soils (Hewitt, 2010). The
soil order Semiarid was also included because it is the dominant soil
order in one region (Fig. 1). In the classification of the World Reference
Base for Soil Resources (IUSS Working Group WRB, 2006) these soil
orders correspond to Cambisols, Luvisols, Podzols, Fluvisols and Are-
nosols, respectively. At each site, three bulk soil samples (0-5-cm
depth) were taken along a transect of 30 m length. The soil samples
were sieved to < 2mm, air-dried, and analyzed for texture on a Mal-
vern laser sizer (Mastersizer 2000, Malvern Instruments, Malvern, UK)
and organic carbon (OC) content using a Leco Truspec instrument
(Blakemore et al., 1987). The pH was measured in 1 M KCl following
the methodology of Blakemore et al. (1987) and EC was measured in a
soil/water extract of 1:9 by volume. Oxalate extractable iron (Fe,y),
aluminium (Al,y) and phosphorous (P,,) were measured following the
method of Schoumans (2000), and Olsen P was measured following the
method of Olsen (1954).

2.2. Determination of glyphosate sorption coefficient

For the determination of the K4 of glyphosate, 1*C labelled
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glyphosate ([glycine 2-14C] glyphosate, N-(phosphonomethyl)glycine)
was purchased from Perkin Elmer (Boston, USA). The *C labelled
glyphosate was dissolved in 0.01 M CaCl, to prepare stock solutions
with an initial glyphosate concentration of 0.23mgL~'. To prevent
microbial degradation, sodium azide (1.00gL_1) was added to the
glyphosate solution (Soares et al., 2013).

The K, of glyphosate was measured with batch sorption experiments
in triplicate. Soil aliquots of 0.5 g were transferred to glass centrifuge
tubes with Teflon caps and equilibrated with 0.5 mL of 0.01 M CaCl, for
24 h. Nine milliliters of glyphosate stock solution (0.23 mgL™!) were
added, after which the samples were rotated end-over-end at 30 rpm at
20 °C for 24 h. Then, the samples were centrifuged at 5000 rpm for one
hour. From each sample, three mL of the supernatant were mixed with
17 mL scintillation cocktail (Packard Ultima Gold). A liquid scintillation
analyzer (Packard Tri-carb 2250CA, Packard Instrument Co., IL) was
used to measure the activity of the solution (DPM) which was then
transformed to concentration (gL~ "). The specific amount of glypho-
sate sorbed (Cs; gkg_l) was calculated from the soil dry weight (ms)
and the difference between the solution concentration (g L™Y at ap-
parent equilibrium (Ce) (i.e., after the 24-h incubation period) and the
solution concentration (gL~') in equivalent samples from assays run
without soil (Ci):

Cs = V(C;j — Ce)/mg (€9)

where V is the volume in liters. The sorption coefficient of glyphosate,
Kq (Lkg™!) was calculated from:

C (2)

2.3. Multiple linear regression analysis

A forward multiple linear regression (MLR) analysis was performed
to find a subset among the measured basic soil properties (clay, silt,
sand, OC, pH, EC, Al,,, Fe.y, Pox, and Olsen P) that would control the
variation in the K, of glyphosate across the 68 samples. In the MLR, it
was a prerequisite that the effect of a given soil property was significant
(p < 0.05) to be included. Further, the variance inflation factor (VIF)
was used to indicate multicollinearity among the soil properties.

2.4. Vis—NIRS measurements

For this study, we used a NIRS™ DS2500 spectrometer (FOSS,
Hillergd, Denmark). It measures diffuse reflectance in a sampling in-
terval of 0.5nm from 400 to 2500 nm (Hermansen et al., 2016). The
instrument require approximately 30-50 g of air-dried and 2-mm sieved
soil sample, which was transferred to a quartz sample cup with a cup
diameter of 7 cm and a glass diameter of 6 cm. The cup was rotated
inside the spectrometer, resulting in spectral measurements at seven
positions. The seven scans were further averaged into one re-
presentative soil spectrum. The diffuse reflectance (R) was then con-
verted into absorbance (A) (A = [log(1/R)]).
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2.5. Multivariate data analysis

The Matlab program PLS Toolbox version 8.6.2 (Eigenvector
Research Inc.) was used for multivariate data analysis. Partial least
squares regression (PLSR) (SIMPLS algorithm; (de Jong, 1993) with ten-
fold cross-validation was used to correlate the vis—NIR spectra to each
of the soil properties to be predicted and thereby establish vis—NIRS
prediction models. Different spectral preprocessing methods were ap-
plied to correct for nonlinear trends and additive and/or multiplicative
effects in the spectrum, including Savitzky-Golay 1st and 2nd derivative
(Savitzky and Golay, 1964), detrending, and standard normal variate
(SNV) (Barnes et al., 1989). The regression coefficient from each model
was used to indicate spectral bands important for predicting each soil
property.

To further optimize the vis—NIRS model for pH, P,,, Fe,y, Alyx, and
the Ky of glyphosate, the variable selection method “interval partial
least square regression” (iPLSR) (Hermansen et al., 2017; Knadel et al.,
2018; Ngrgaard et al., 2000; Zou et al., 2010) was applied on pretreated
spectra to test whether these parameters could be predicted with higher
accuracy using only a subset of spectral intervals compared to using the
entire spectrum. Previous studies have shown that using spectral in-
tervals found by forward iPLSR can decrease prediction errors and at
the same time sort out irrelevant spectral information for a specific soil
property, thereby decreasing model complexity (Hermansen et al.,
2017; Knadel et al., 2018).

The root mean square error (RMSE) of calibration (RMSEC) and
cross-validation (RMSECV), the coefficient of determination (R?), as
well as the ratio of performance to interquartile range (RPIQ) were used
as statistical measures to evaluate model accuracy. The RPIQ relates the
RMSECYV to the difference between the third (Q3) and first (Q1) quartile
of the dataset (RPIQ = (Q3 - Q1/RMSECV) (Bellon-Maurel et al.,
2010).

3. Results and discussion
3.1. Soil properties and glyphosate sorption

This dataset represented five soil orders (Brown, Pallic, Podzol,
Recent, and Semiarid) (Fig. 1) within the New Zealand soil classifica-
tion scheme and thereby the soils covered a wide range in mineralogy
and USDA texture classes (Table 1; Fig. 2). Eight soil types were re-
presented (sand, loamy sand, sandy loam, loam, silty loam, silt, silty
clay loam, and silty clay), with clay contents between 0.001 and
0.520kgkg™! and OC contents between 0.021 and 0.217 kgkg ™'
(Table 1). The K4 of glyphosate spanned a wide range from 13.4 to
3810.4 L kg’1 (Table 1). In comparison, the study of Dollinger et al.
(2015) represented soils from 23 studies conducted in Asia, Europe, and
South and North America with a gradient in the K4 of glyphosate of 0.06
to 403.5 Lkg’l, and the study of Paradelo et al. (2015) included two
Danish field sites with K4 of glyphosate between 161 and 667 Lkg ™).

The soil property with the highest correlation to the Ky of glypho-
sate was Fe,, ranging from 8.9 to 260.0 mmol kg_1 (r=0.91,

Table 1
Descriptive statistics of selected soil properties for New Zealand soil samples.
Clay silt oc? pH EC’ Algy© Feoy® Pox’ Olsen P¢ Kq©
Kgkg™? Kgkg™! Kgkg™? mScm™? mmol kg ! mmol kg ™! mmol kg ! mmol kg ! Lkg™!
Min 0.001 0.064 0.021 4.5 0.6 7.6 8.9 6.2 0.4 13.4
Max 0.520 0.896 0.217 6.3 10.0 340.0 260.0 68.0 7.1 3810.4
Mean 0.088 0.632 0.056 5.3 3.4 78.6 63.3 22.2 1.7 690.1

* 0C, Organic carbon.
" EC, Electrical conductivity.
“ Aloy, Feox and P, Oxalate-extractable aluminum, iron and phosphorous.
d .
Olsen P, plant available phosphorous.
¢ Ky, glyphosate sorption coefficient.
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Fig. 2. Distribution of the soil samples from New Zealand (n = 68) within the
USDA soil textural triangle.

p < 0.001) closely followed by Al,x ranging from 7.6 to
340.0 mmol kg’1 (r=0.89, p < 0.001) (Table 2; Fig. 3c and d). This
finding corroborates with the literature: The variable-charge surfaces of
aluminum and iron oxides are known to be amongst the main sorbents
for glyphosate in soil (Borggaard and Gimsing, 2008; Gimsing and
Borggaard, 2010). The content of Py (6.2-68.0 mmol kgfl) as well as
pH (4.5-6.3) also contributed to explaining the variation in the K4 of
glyphosate (r = 0.37, p < 0.01 and r = -0.26, p < 0.05, respectively)
of these acidic soils (Table 2; Fig. 3a and b). Surprisingly, clay content
did not correlate to the K4 of glyphosate (Table 2), although it has been
found to be an important sorbent for glyphosate in other studies
(Dollinger et al., 2015; Paradelo et al., 2015). This might be explained
by the potentially wide variability in mineralogy amongst the soils of
our dataset. Differences in glyphosate sorption capacity of clay minerals
have been observed: Glass (1987) found montmorillonite to exhibit the
highest capacity for glyphosate sorption followed by illite and then
kaolinite, and Gimsing and Borggaard (2010) also found montmor-
illonite to sorb more glyphosate compared to illite.
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3.2. Multiple linear regression analysis

The forward MLR revealed that the variation in the K4 of glyphosate
could be explained using Fe,y, Al,x, Pox, and pH in combination. However,
the intercorrelation between Al,, and Fe,, was high (VIF of 6.4 and 6.4,
respectively) (Table 2), and therefore Fe,, was excluded. Although Fe,,
was the single best predictor of the K, of glyphosate, we obtained a slightly
higher accuracy for the Ky of glyphosate in the MLR expression when
including Al (R? = 0.89, RMSE = 259.59 mmol kgfl) compared to in-
cluding Fe,, (R? = 0.88, RMSE = 267.77 mmol kg ~!). The final MLR ex-
pression including Al ox, P, and pH is presented in Fig. 4.

Dollinger et al. (2015) suggested that cation exchange capacity and
clay content could be applied to determine the K4 across soil samples
from Europe, Asia, and North and South America (Kg from 0.83 to
318.82Lkg ™). It was also suggested to estimate the amount of sorbed
glyphosate from Fe and pH for a set of Danish soil samples (Gimsing
et al., 2004). Further, clay, pH, P, and Al were found to be controlling
the Freundlich sorption coefficients of soil samples from Argentina (De
Gerénimo et al., 2018). Paradelo et al. (2015) found EC, clay and sand
contents to be the best predictors of K4 across two Danish agricultural
fields (Kq from 161 to 667Lkg’1). However, the best subset of soil
properties controlling K, differed when the analysis was performed on
each separate field. The best subset of soil properties controlling Kq
included pH, clay, Fe, and Olsen P (K4 from 161 to 536 L kg~ *, clay:
0.06-0.14 kgkg ™', OC: 0.02-0.08 kg kg ) for one field, and pH, clay,
OC and Olsen P for the other field (Kq from 344 to 667Lkg’1, clay:
0.14-0.19kgkg ™!, OC: 0.02-0.02kgkg ™).

3.3. Qualitative analysis of vis—NIR spectra

It is possible to give a qualified suggestion for which soil properties
are affecting the vis—NIR spectra, since several studies have reported
which spectral bands are associated with absorption from different
chemical bonds and electronic transitions of iron oxides (Clark et al.,
1990; Post and Noble, 1993; Stenberg et al., 2010). However, it should
be kept in mind that absorption from different organic and inorganic
soil constituents is overlapping throughout the spectrum.

The vis—-NIR spectra of the two samples exhibiting the highest
(3810.35Lkg ™ !; a Brown soil sample) and lowest K4 of glyphosate
(13.44Lkg ™~ *; a Podzol soil sample) are depicted in Fig. 5. The sample
with the highest K4 of glyphosate is also the sample with the highest
content of Fe,, (260 mmol kg’l) and Aly, (340 rnmolkg’l) in this
dataset and it has a clay content of 0.016 kgkg ™! and an OC content of
0.086 kg kg ~'. The sample with the lowest K4 of glyphosate has one of
the lowest Fey, (12mmolkg~!) and Al,, (14 mmolkg™") contents, a

Table 2
Pearson correlation matrix of selected soil properties for 68 soil samples collected across the South Island of New Zealand under pasture.
Clay silt Sand oc? pH EC’ Algy© Feoy® Pox’ Olsen P¢ Ky©

Clay 1 —0.08 —0.44x! —0.04 -0.19 -0.18 —0.03 —0.02 -0.17 -0.17 0.05
Silt 1 —0.86%** —0.26% -0.16 —0.36%* —0.24* —-0.09 —-0.27* —-0.22 —0.09
Sand 1 0.26* 0.24 0.41%** 0.23 0.1 0.33** 0.28* 0.06
OoC 1 0.14 0.48%** 0.3* 0.26* 0.27* 0.76%** 0.18
pH 1 0.23 —0.02 -0.13 0.14 0.09 —0.26*
EC 1 0.41%** 0.27* 0.49%** 0.51%** 0.21
Aloy 1 0.91*** 0.64%** —-0.03 0.89%**
Feox 1 0.59%** -0.12 0.91%**
Pox 1 0.31%* 0.37**
Olsen P 1 -0.19
Ky 1
? 0OC; Organic carbon.
b

EC; Electrical conductivity.

Olsen P: Fraction of available phosphorous.
Kg; glyphosate sorption coefficient.

c
d
e
f Significance levels of *0.05, **0.01, and ***0.001.

Al,y, Feox and P,,; oxalate-extractable fractions of aluminum, iron and phosphorous.
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Fig. 4. Multiple linear regression analysis for the glyphosate sorption coeffi-
cient (Ky) including pH and oxalate-extractable aluminum and phosphorous.
R?, coefficient of determination; RMSE, root mean square error; RPIQ, ratio of
performance to interquartile range.

clay content of 0.075kgkg ' and the highest OC content of

0.217 kgkg™'. The difference in soil composition between these two
samples is clear when comparing the spectra. The shape of the spectrum
in the visible range was more concave for the soil with the highest K4
due to the high Fe,, content, whereas the spectrum of the soil with
lowest K4 was more convex due to the high OC content. A peak which
could be caused by the presence of adsorbed and/or lattice OH around
1420 nm (Ben-Dor, 2002) and a peak which could be caused by ad-
sorbed water around 1927 nm (Ben-Dor, 2002) were visible for both
samples. The sample with the lowest K4 of glyphosate exhibited a local
minimum in absorbance around 2222nm. This absorption band is
usually affected by the Al-OH bond (Knadel et al., 2013; Viscarra Rossel
and Behrens, 2010).
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Fig. 5. Visible near-infrared absorbance spectra of the two samples in the da-
taset with the highest and lowest sorption coefficient of glyphosate (Ky). The
highlighted region indicates a spectral region affected by overlapping sig-
natures from iron oxides (Fe,yx) and organic matter (OM).

3.4. Interval partial least squares regression spectral intervals

With iPLSR, the optimal spectral pretreatment technique for pH
prediction was 3rd order detrending followed by SNV, thereby reducing
nonlinear trends and scattering effects from the spectrum. For Py, Fe,,
Al,y, and the Kq4 of glyphosate, the best results with iPLSR were ob-
tained on spectra with no pretreatments applied (Tables 3 and 4 and
Supplementary material, Table 1). A spectral subset including six in-
tervals of adjacent wavelengths for the Ky of glyphosate vis—-NIRS
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Spectral intervals from interval partial least squares regression (iPLSR) for pH, oxalate-extractable phosphorous (P,,), iron (Fe,y), and
aluminium (Al,y), and the sorption coefficient of glyphosate (K4). For pH, spectral pretreatments included detrending (3rd order) followed
by standard normal variate, whereas no pretreatment was applied for the remaining models.

Parameter iPLSR intervals (nm)

pH 1000-1050 and 1900-2000

Pox 580-700, 1000-1060, 1120-1180, 1420-1480, 1720-1780, 1900-1960, 2260-2320, and 2380-2440

Feox 400-440, 480-520, 840-880, 1360-1400, 1680-1720, 1760-1800, 1880-1920, 2280-2320, and 2400-2480
Al 550-600, 1000-1100, and 2100-2200

Ka 400-440, 560-600, 640-680, 1280-1320, 2160-2240, and 2280-2360

Table 4

Best performing models using interval partial least squares regression (iPLSR) for pH, oxalate extractable fractions of phosphorous (P,y), iron (Fe,y), and aluminum

(Al,y), and glyphosate sorption coefficients (Kg).

Parameter Spectral pretreatment Factors RMSEC? R% (C)° RMSECV® R (CV)! RPIQ®
pH Detrending + SNV* 7 0.62 0.28 0.32 0.50 1.58
Pox None 15 3.58 0.91 4.86 0.84 2.67
Feox None 14 9.83 0.97 14.31 0.93 2.48
Alyy None 13 15.22 0.96 20.70 0.94 2.43
Ky None 14 139.78 0.97 207.58 0.93 2.59

a

b

Root mean square error of calibration.
Regression coefficient from calibration.
Root mean square error of cross-validation.
Regression coefficient from cross-validation.
¢ Ratio of performance to interquartile range.
f Standard normal variate.

c

d

prediction was selected and included intervals from 400 to 440 nm, 560
to 600 nm, 640 to 680 nm, 1280 to 1320 nm, 2160 to 2240 nm, and
2280 to 2360 nm (Table 3).

The first three iPLSR intervals from 400 to 440 nm, 560 to 600 nm,
and 640 to 680 nm are located in spectral regions that are affected by
iron oxides, such as goethite (e.g., around 420, 434, and 650 nm) and
hematite (e.g., at 404, 529 and 650 nm) (Knadel et al., 2013; Stenberg
et al., 2010; Viscarra Rossel and Behrens, 2010; Viscarra Rossel et al.,
2006). Further, the iPLSR model for Fe,, is utilizing a similar spectral
interval from 400 to 440 nm, which emphasizes that this spectral in-
terval contains useful information about iron oxides. The iPLSR interval
from 640 to 680 nm used for predicting the K4 is overlapping spectral
intervals used for predicting P,y (580-700 nm) and Al (550-600 nm),
which might reflect the intercorrelation to iron oxides for these soil
parameters (Table 2). The iPLSR interval from 1280 to 1320 nm is
overlapping a spectral range affected by OH bonds associated with
minerals (Hunt, 1977) and some species of OM. It seems more probable
that the model is utilizing information from soil moisture than OM due
to the low correlation between the K4 of glyphosate and OC (Table 2).
However, some literature states that OM is affecting the K4 of glypho-
sate (Borggaard and Gimsing, 2008; Dollinger et al., 2015; Gerritse
et al., 1996; Paradelo et al., 2015; Piccolo et al., 1996; Vereecken,
2005), and therefore the quality and quantity of OM might also be af-
fecting this vis—NIRS model. The iPLSR interval from 2160 to 2240 nm
is located in a spectral region with signatures from the OH stretch and
metal-OH bend (Viscarra Rossel and Behrens, 2010), which corrobo-
rates with the fact that the iPLSR model for Al,, utilizes an overlapping
spectral interval from 2100 to 2200 nm. The last spectral interval from
2280 to 2360 nm is located in a spectral region affected by different
clay minerals and species of organic matter (Viscarra Rossel and
Behrens, 2010), and this region was also important for the Fe,, pre-
diction (iPLSR interval from 2280 to 2320 nm).

3.5. Vis—NIRS models

The pH, Py, Fe,y, and Al were vis—NIRS-predicted to test whether
vis—NIRS could predict basic soil properties controlling the Ky of

glyphosate (Table 4; Fig. 6). Using spectral intervals selected with
iPLSR improved all four models as compared to using the entire spec-
trum (Supplementary material, Table 1).

The pH was estimated with moderate accuracy in cross-validation
(R? of 0.50, RMSECV of 0.32, RPIQ = 1.58; Fig. 6a). Since pH is not
spectrally active the ability of vis—NIRS to estimate pH might be caused
by intercorrelations of pH with OC and clay contents (Wetterlind and
Stenberg, 2010). Thus, the low accuracy for pH determination might be
caused by the fact that pH possess a very low correlation to OC and clay
contents (Table 2). The P, content was predicted with an R20f 0.84, an
RMSECV of 4.86 mmol kg_l, and an RPIQ value of 2.67 (Fig. 6b). An-
other study predicted P,, with a R® of 0.79 and an RMSEP of
4.81 mmolL™! (P, range from 0.99 to 39.55 mmol L™1) (Kawamura
et al., 2019). Since phosphorous does not carry any direct spectral
signatures, the vis-NIRS-prediction of P, is possible because it corre-
lates to soil components that are spectrally active (Stenberg et al.,
2010), as for example Fe,, and Al,, for this dataset (Table 2). The Fe,
content was predicted well (R? of 0.93, RMSECV of 14.31 mmolkg™?,
RPIQ of 2.48; Fig. 6¢). This accuracy is higher as compared with the
study of Xu et al. (2018), in which Fe,, was predicted with an R20f 0.85
and an RMSEP of 17.27mmolkg™' (Fe,x range from 1.61 to
222.58 mmol L™ 1). The Al,, prediction was also successful (R of 0.94,
RMSECV of 20.70 mmolkg ™, RPIQ of 2.43; Fig. 6d), with a similar
RPIQ as was obtained for the Fe,, prediction. Compared to Paradelo
et al. (2016) where Al,, was predicted with an R? of 0.88 and an
RMSECV of 4.85mmol kg~ * the R? was higher in this study, but the
RMSECV was much lower in Paradelo et al. (2016), possibly due to a
higher variability in our samples.

As Supplementary information, we successfully predicted OC con-
tent (R? of 0.64, RMSECV of 0.018 kg kg ™), EC (R? of 0.74, RMSECV of
1.15 mS cm ™ 1), and Olsen P (R? of 0.64, RMSECV of 21.34 mmol kg~ %)
using the entire spectrum. However, the soil texture could not be pre-
dicted, possibly due to the high variability in mineralogy of this dataset.

The K4 of glyphosate was successfully predicted, resulting in an R*
of 0.93, an RMSECV of 207.58, and an RPIQ of 2.59) (Fig. 7; Table 4).
Using iPLSR improved the model accuracy for both pH, Py, Feoy, Alox
and the K4 of glyphosate as compared to using the entire spectrum.
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Compared to Paradelo et al. (2016) who obtained an R? of 0.79 and an
RMSECV of 45.54 L. kg ~ ! using the full spectrum, we generated a higher
R? and a higher error due to the large range in K4 of glyphosate present
in our dataset.

4. Conclusion

This study included soil samples from New Zealand, covering a wide
range of several soil properties. The key drivers for the variation in
glyphosate sorption coefficient (Ky) included pH, and oxalate-ex-
tractable fractions of phosphorous (P,,), iron (Fey,) and aluminum
(Al,y). Further, the best subset for a multiple linear regression for the K4
of glyphosate consisted of Aly,, Pox and pH.

We successfully established vis—-NIRS prediction models for the soil
properties controlling K, of glyphosate. Based on RPIQ values, the P,
vis—NIRS-model obtained the highest accuracy (RPIQ of 2.67) followed
by the models for Fe,, (RPIQ of 2.48), Al,x (RPIQ of 2.43) and pH (RPIQ
of 1.58).

The Ky of glyphosate was best and successfully predicted with a
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Fig. 7. Visible near-infrared spectroscopy predictions of the glyphosate sorption
coefficient (Ky) using spectral intervals determined using interval partial least
squares regression (iPLSR). R?, coefficient of determination; RMSECV, root
mean square error of cross-validation; RPIQ, ratio of performance to inter-
quartile range.

Measured Al (mmol kg™

subset of the spectrum, found by interval partial least squares regres-
sion (iPLSR) including information from iron oxides, organic matter
species, soil moisture, and aluminum oxides.

Based on the findings of this study and considering our dataset, it
was more accurate to apply vis—NIRS to predict K4 of glyphosate than
MLR analysis utilizing basic soil properties. Our study documents that
the Ky of glyphosate can be vis—-NIRS-predicted at large scale and not
only at field-scale. The applicability of vis—-NIRS for the prediction of K4
of glyphosate adds a functional soil property to the list of numerous
basic and functional soil properties that can be obtained from a single
vis-NIR spectrum.
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